References#

[1]

Jurgen Hafner. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry, 29(13):2044–2078, Oct 2008. arXiv:NIHMS150003, doi:10.1002/jcc.21057.

[2]

Stewart J. Clark, Matthew D. Segall, Chris J. Pickard, Phil J. Hasnip, M. I J Probert, Keith Refson, and Mike C. Payne. First principles methods using CASTEP. Zeitschrift fur Kristallographie, 220(5-6):567–570, Jan 2005. doi:10.1524/zkri.220.5.567.65075.

[3]

Roberto Dovesi, Roberto Orlando, Alessandro Erba, Claudio M. Zicovich-Wilson, Bartolomeo Civalleri, Silvia Casassa, Lorenzo Maschio, Matteo Ferrabone, Marco De La Pierre, Philippe D'Arco, Yves Noel, Mauro Causa, Michel Rerat, and Bernard Kirtman. CRYSTAL14: A program for the ab initio investigation of crystalline solids. International Journal of Quantum Chemistry, 114(19):1287–1317, Oct 2014. doi:10.1002/qua.24658.

[4]

X. Gonze, F. Jollet, F. Abreu Araujo, D. Adams, B. Amadon, T. Applencourt, C. Audouze, J. M. Beuken, J. Bieder, A. Bokhanchuk, E. Bousquet, F. Bruneval, D. Caliste, M. Cote, F. Dahm, F. Da Pieve, M. Delaveau, M. Di Gennaro, B. Dorado, C. Espejo, G. Geneste, L. Genovese, A. Gerossier, M. Giantomassi, Y. Gillet, D. R. Hamann, L. He, G. Jomard, J. Laflamme Janssen, S. Le Roux, A. Levitt, A. Lherbier, F. Liu, I. Lukacevic, A. Martin, C. Martins, M. J.T. Oliveira, S. Ponce, Y. Pouillon, T. Rangel, G. M. Rignanese, A. H. Romero, B. Rousseau, O. Rubel, A. A. Shukri, M. Stankovski, M. Torrent, M. J. Van Setten, B. Van Troeye, M. J. Verstraete, D. Waroquiers, J. Wiktor, B. Xu, A. Zhou, and J. W. Zwanziger. Recent developments in the ABINIT software package. Computer Physics Communications, 205:106–131, Aug 2016. doi:10.1016/j.cpc.2016.04.003.

[5]

Paolo Giannozzi, Stefano Baroni, Nicola Bonini, Matteo Calandra, Roberto Car, Carlo Cavazzoni, Davide Ceresoli, Guido L. Chiarotti, Matteo Cococcioni, Ismaila Dabo, Andrea Dal Corso, Stefano De Gironcoli, Stefano Fabris, Guido Fratesi, Ralph Gebauer, Uwe Gerstmann, Christos Gougoussis, Anton Kokalj, Michele Lazzeri, Layla Martin-Samos, Nicola Marzari, Francesco Mauri, Riccardo Mazzarello, Stefano Paolini, Alfredo Pasquarello, Lorenzo Paulatto, Carlo Sbraccia, Sandro Scandolo, Gabriele Sclauzero, Ari P. Seitsonen, Alexander Smogunov, Paolo Umari, and Renata M. Wentzcovitch. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. Journal of Physics Condensed Matter, 21(39):395502, Sep 2009. arXiv:0906.2569, doi:10.1088/0953-8984/21/39/395502.

[6]

Atsushi Togo and Isao Tanaka. First principles phonon calculations in materials science. Scripta Materialia, 108:1–5, Nov 2015. arXiv:1506.08498, doi:10.1016/j.scriptamat.2015.07.021.

[7]

Julian D. Gale and Andrew L. Rohl. The General Utility Lattice Program (GULP). Molecular Simulation, 29(5):291–341, May 2003. arXiv:arXiv:1011.1669v3, doi:10.1080/0892702031000104887.

[8]

Benjamin J. Sumlin, William R. Heinson, and Rajan K. Chakrabarty. Retrieving the aerosol complex refractive index using PyMieScatt: A Mie computational package with visualization capabilities. Journal of Quantitative Spectroscopy and Radiative Transfer, 205:127–134, 2018. doi:10.1016/j.jqsrt.2017.10.012.

[10]

PyGtm. URL: http://pygtm.readthedocs.io/.

[11]

Nikolai Christian Passler, Mathieu Jeannin, and Alexander Paarmann. Layer-resolved absorption of light in arbitrarily anisotropic heterostructures. Physical Review B, 101(16):1–12, 2020. arXiv:2002.03832, doi:10.1103/PhysRevB.101.165425.

[12]

Nikolai Christian Passler and Alexander Paarmann. Generalized 4 × 4 matrix formalism for light propagation in anisotropic stratified media: Study of surface phonon polaritons in polar dielectric heterostructures. arXiv, 36(11):3246–3248, 2017. arXiv:1707.00462, doi:10.1364/josab.36.003246.

[13]

Nikolai Christian Passler and Alexander Paarmann. Generalized 4 × 4 matrix formalism for light propagation in anisotropic stratified media: study of surface phonon polaritons in polar dielectric heterostructures: erratum. Journal of the Optical Society of America B, 36(11):3246, nov 2019. URL: https://www.osapublishing.org/abstract.cfm?URI=josab-36-11-3246, arXiv:1707.00462, doi:10.1364/JOSAB.36.003246.

[14]

Mélanie M. Bay, Silvia Vignolini, and Kevin Vynck. Pyllama: a stable and versatile python toolkit for the electromagnetic modelling of multilayered anisotropic media. Computer Physics Communications, 273:108256, 2022. URL: https://doi.org/10.1016/j.cpc.2021.108256, doi:10.1016/j.cpc.2021.108256.

[15]

Filipe Teixeira. Vibanalysis - tools for performing vibrational analysis on molecular systems. 2017. URL: https://github.com/teixeirafilipe/vibAnalysis (visited on 2017-07-04).

[16]

Filipe Teixeira and M. Natália D.S. Cordeiro. Improving Vibrational Mode Interpretation Using Bayesian Regression. Journal of Chemical Theory and Computation, 15(1):456–470, 2019. doi:10.1021/acs.jctc.8b00439.

[17]

Mayank Kaushik, Brian W Ng, Bernd M Fischer, and Derek Abbott. Terahertz scattering by granular composite materials : An effective medium theory Terahertz scattering by granular composite materials : An effective medium theory. Applied Physics Letters, 100(1):1–4, 2012. doi:10.1063/1.3674289.

[18]

John E Bertie. Glossary of Terms used in Vibrational Spectroscopy. Wiley, Aug 2006. doi:10.1002/0470027320.s8401.

[19]

E. B. Wilson, J. C. Decius, P. C. Cross, and Benson R. Sundheim. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra. 1955. doi:10.1149/1.2430134.

[20]

Thomas R Juliano and Timothy M Korter. Terahertz vibrations of crystalline acyclic and cyclic diglycine: benchmarks for London force correction models. The Journal of Physical Chemistry. A, 117(40):10504–12, Oct 2013. doi:10.1021/jp407112w.

[21]

Andrew D Burnett, John Kendrick, Christopher Russell, Jeppe Christensen, John E Cunningham, Arwen R Pearson, Edmund H Linfield, and a Giles Davies. Effect of molecular size and particle shape on the terahertz absorption of a homologous series of tetraalkylammonium salts. Analytical chemistry, 85(16):7926–34, Aug 2013. doi:10.1021/ac401657r.

[22]

Andrey Pereverzev and Thomas D. Sewell. Terahertz normal mode relaxation in pentaerythritol tetranitrate. The Journal of Chemical Physics, 134(1):014513, 2011. doi:10.1063/1.3518423.

[23]

H C Van De Hulst. Light Scattering by Small Particles. Volume 1. Dover, New York, 1981. ISBN 0486642283. doi:10.1007/BF00225274.

[24]

Frederick Wooten. Optical Properties of Solids. Academic Press, New York, 1972.

[25]

Xavier Gonze and Changyol Lee. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Physical Review B, 55(16):10355–10368, Apr 1997. doi:10.1103/PhysRevB.55.10355.

[26]

H Frohlich. Theory of dielectrics. Oxford University Press, Oxford, 1948.

[27]

L. Genzel and T. P. Martin. Infrared Absorption in Small Ionic Crystals. Physica Status Solidi (b), 51(1):91–99, May 1972. doi:10.1002/pssb.2220510107.

[28]

Carlos J Serna, Manuel Ocafia, and Juan E Iglesias. Optical properties of a-Fe2O3 microcrystals in the infrared. J. Phys. C: Solid St. Phys., 20:473–484, 1987.

[29]

J E Iglesias, M Ocana, and C J Serna. Aggregation and matrix effects on the infrared spectrum of microcrystalline powders. Appl.Spectrosc, 44(3):418–426, 1990.

[30]

Etienne Balan, Simon Delattre, Damien Roche, Loic Segalen, Guillaume Morin, Maxime Guillaumet, Marc Blanchard, Michele Lazzeri, Christian Brouder, and Ekhard K H Salje. Line-broadening effects in the powder infrared spectrum of apatite. Physics and Chemistry of Minerals, 38(2):111–122, Feb 2011. doi:10.1007/s00269-010-0388-x.

[31]

Etienne Balan, Marc Blanchard, Jean-Francois Hochepied, and Michele Lazzeri. Surface modes in the infrared spectrum of hydrous minerals: the OH stretching modes of bayerite. Physics and Chemistry of Minerals, 35(5):279–285, Mar 2008. doi:10.1007/s00269-008-0221-y.

[32]

Chloe Fourdrin, E. Balan, T. Allard, C. Boukari, and G. Calas. Induced modifications of kaolinite under ionizing radiation: An infrared spectroscopic study. Physics and Chemistry of Minerals, 36(5):291–299, 2009. doi:10.1007/s00269-008-0277-8.

[33]

Ari Sihvola. Electromagnetic Mixing Formulas and Applications. IET, The Institution of Engineering and Technology, Michael Faraday House, Six Hills Way, Stevenage SG1 2AY, UK, Jan 1999. ISBN 9780852967720. doi:10.1049/PBEW047E.

[34]

Michael T Ruggiero, Tiphaine Bardon, Matija Strlic, Philip F Taday, and Timothy M Korter. The role of terahertz polariton absorption in the characterization of crystalline iron sulfate hydrates. Phys. Chem. Chem. Phys., 17(14):9326–9334, 2015. doi:10.1039/C5CP01195G.

[35]

Stefano Giordano. Effective medium theory for dispersions of dielectric ellipsoids. Journal of Electrostatics, 58(1-2):59–76, May 2003. doi:10.1016/S0304-3886(02)00199-7.

[36]

Tom G Mackay and Akhlesh Lakhtakia. On the application of homogenization formalisms to active dielectric composite materials. Optics Communications, 282(13):2470–2475, 2009. arXiv:0901.2092, doi:10.1016/j.optcom.2009.03.035.

[37]

K. Karkkainen, a. Sihvola, and K. Nikoskinen. Analysis of a three-dimensional dielectric mixture with finite difference method. IEEE Transactions on Geoscience and Remote Sensing, 39(5):1013–1018, 2001.

[38]

Siti Jamaian and Tom G. Mackay. On limitations of the Bruggeman formalism for inverse homogenization. Journal of Nanophotonics, 4(1):043510, Jun 2010. arXiv:1004.5331, doi:10.1117/1.3460908.

[39]

M Meier and A Wokaun. Enhanced fields on large metal particles: dynamic. Optics Letters, 8(11):581–583, 1983.

[40]

I Peltoniemi. Variational volume integral equation method for electromagnetic scattering by irregular grains. Journal of Quantitative Spectroscopy and Radiative Transfer, 1996.

[41]

Brian Stout, Michel Neviere, and Evgeny Popov. T matrix of the homogeneous anisotropic sphere : applications to orientation-averaged resonant scattering. J. Opt. Soc. Am. A, 24(4):1120–1130, 2007.

[42]

Julie Aufort, Loic Segalen, Christel Gervais, Christian Brouder, and Etienne Balan. Modeling the attenuated total reflectance infrared (ATR-FTIR) spectrum of apatite. Physics and Chemistry of Minerals, 43(9):615–626, 2016. doi:10.1007/s00269-016-0821-x.

[43]

Etienne Balan, Francesco Mauri, Celine Lemaire, Christian Brouder, Francois Guyot, A. Marco Saitta, and Bertrand Devouard. Multiple Ionic-Plasmon Resonances in Naturally Occurring Multiwall Nanotubes: Infrared Spectra of Chrysotile Asbestos. Physical Review Letters, 89(17):177401, oct 2002. URL: https://link.aps.org/doi/10.1103/PhysRevLett.89.177401, doi:10.1103/PhysRevLett.89.177401.

[44]

Milan Milosevic. Internal reflection and ATR spectroscopy. Applied Spectroscopy Reviews, 39(3):365–384, 2004. doi:10.1081/ASR-200030195.

[45]

P. C. Waterman and Rohn Truell. Multiple scattering of waves. Journal of Mathematical Physics, 2(4):512–537, jul 1961. URL: http://aip.scitation.org/doi/10.1063/1.1703737, doi:10.1063/1.1703737.

[46]

Paul H C Eilers. Baseline Correction with Asymmetric Least Squares Smoothing. Analytical Chemistry, 75(14):3631–3636, 2005. URL: http://pubs.acs.org/doi/abs/10.1021/ac034173t, doi:10.1021/ac034173t.

[47]

R. C. Rumpf. IMPROVED FORMULATION OF SCATTERING MATRICES FOR SEMI-ANALYTICAL METHODS THAT IS CONSISTENT WITH CONVENTION. Progress In Electromagnetics Research B, 35(August):241–261, 2011.

[48]

Daniel Dietze. Fsrstools - yeh_tm. 2015. URL: https://github.com/ddietze/FSRStools (visited on 2017-07-04).

[49]

Pochi Yeh. Optics of anisotropic layered media: A new 4 × 4 matrix algebra. Surface Science, 96(1-3):41–53, 1980. doi:10.1016/0039-6028(80)90293-9.

[50]

William Beck. Modeling and Design of Mixed-coherence Optical Stacks. Army Research Laboratory, 2012.

[51]

C. C. Katsidis and D. I. Siapkas. Systems With Coherent , Partially Coherent , and Incoherent Interference. Applied Optics, 41(19):3978–3987, 2002.

[52]

M. Claudia Troparevsky, Adrian S. Sabau, Andrew R. Lupini, and Zhenyu Zhang. Transfer-matrix formalism for the calculation of optical response in multilayer systems: from coherent to incoherent interference. Optics Express, 18(24):24715, nov 2010. URL: https://opg.optica.org/oe/abstract.cfm?uri=oe-18-24-24715, doi:10.1364/OE.18.024715.

[53]

Rudi Santbergen, Arno H.M. Smets, and Miro Zeman. Optical model for multilayer structures with coherent, partly coherent and incoherent layers. Optics Express, 21(S2):A262, 2013. doi:10.1364/oe.21.00a262.

[54]

Peter Uhd Jepsen and Stewart J. Clark. Precise ab-initio prediction of terahertz vibrational modes in crystalline systems. Chemical Physics Letters, 442(4-6):275–280, Jul 2007. doi:10.1016/j.cplett.2007.05.112.

[55]

Werner Hug and Jacques Haesler. Is the Vibrational Optical Activity of (R)‐[2H1, 2H2, 2H3]‐neopentane measurable? Quantum Chemistry, 104:695–715, 2005. doi:10.1002/qua.20600.

[56]

Mariette Hellenbrandt. The Inorganic Crystal Structure Database ( ICSD )— Present and Future. Crystallography Reviews, 10:17–22, 2004. doi:10.1080/08893110410001664882.

[57]

V. G. Tsirelson, A. S. Avilov, Yu. A. Abramov, E. L. Belokoneva, R. Kitaneh, and D. Feil. X-ray and Electron Diffraction Study of MgO. Acta Crystallographica Section B Structural Science, 54(1):8–17, Feb 1998. doi:10.1107/S0108768197008963.

[58]

G Kresse and D Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3):1758–1775, Jan 1999. doi:10.1103/PhysRevB.59.1758.

[59]

John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18):3865–3868, Oct 1996. doi:10.1103/PhysRevLett.77.3865.

[60]

Ciara S. McNally, David P. Turner, Alex N. Kulak, Fiona C. Meldrum, and Geoffrey Hyett. The use of cationic surfactants to control the structure of zinc oxide films prepared by chemical vapour deposition. Chemical Communications, 48(10):1490, 2012. doi:10.1039/c2cc14468a.

[61]

Keiichi Yamamoto, Chan-Dinh Tran, Hiroyasu Shimizu, and Kenji Abe. Optical Surface Phonon Modes in ZnO Small Crystals. Journal of the Physical Society of Japan, 42(2):587–590, Feb 1977. doi:10.1143/JPSJ.42.587.

[62]

J.L. Rendon, J.E. Iglesias, and C.J. Serna. The efect of particle shape on the IR spectra of power oxides. Optica Pura Y Aplicada, 14:117–122, 1981.

[63]

Shinji Hayashi, Nobuyuki Nakamori, Junzo Hirono, and Hitoshi Kanamori. Infrared Study of Surface Vibration Modes in MgO Small Cubes. Journal of the Physical Society of Japan, 43(6):2006–2012, Dec 1977. doi:10.1143/JPSJ.43.2006.

[64]

Diana K. Fisler, Julian D. Gale, and T. Cygan, Randall. A shell model for the simulation of rhombohedral carbonate minerals and their point defects. American Mineralogist, 2000. doi:10.2138/am-2000-0121.

[65]

B. G. Dick and A. W. Overhauser. Theory of the Dielectric Constants of Alkali Halide Crystals. Physical Review, 112(1):90–103, Oct 1958. doi:10.1103/PhysRev.112.90.

[66]

D. B. DeOliveira and R. A. Laursen. Control of calcite crystal morphology by a peptide designed to bind to a specific surface. Journal of the American Chemical Society, 119(44):10627–10631, 1997. doi:10.1021/ja972270w.

[67]

J. D. H. Donnay and D. Harker. A New Law of Crystal Morphology Extending the Law of Bravais. Am. Mineral., 22:446, 1937.

[68]

Clare F. Macrae, Ian J. Bruno, James A. Chisholm, Paul R. Edgington, Patrick McCabe, Elna Pidcock, Lucia Rodriguez-Monge, Robin Taylor, Jacco van de Streek, and Peter A. Wood. Mercury CSD 2.0 – new features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41(2):466–470, Apr 2008. doi:10.1107/S0021889807067908.

[69]

John M Hughes, Maryellen Cameron, and Kevin D Crowley. Structural variations in natural F, OH, and Cl apatites. American Mineralogist, 74(7-8):870–876, 1989.

[70]

J. L. Derissen, H. J. Endeman, and A. F. Peerdeman. The crystal and molecular structure of L-aspartic acid. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 24(10):1349–1354, Oct 1968. doi:10.1107/S0567740868004280.

[71]

Alexandre Tkatchenko and Matthias Scheffler. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Physical review letters, 102(7):073005, Feb 2009. doi:10.1103/PhysRevLett.102.073005.

[72]

TR Juliano and TM Korter. Origins of Hydration Differences in Homochiral and Racemic Crystals of Aspartic Acid. J. Phys. Chem. A, 119:1396–1403, 2015. doi:10.1021/jp512359p.

[73]

J. T. Lopez Navarrete, V. Hernandez, and F. J. Ramirez. Ir and Raman spectra of L-aspartic acid and isotopic derivatives. Biopolymers, 34(8):1065–1077, Aug 1994. doi:10.1002/bip.360340810.

[74]

G. A. Komandin, O. E. Porodinkov, I. E. Spector, and A. A. Volkov. Multiphonon absorption in a MgO single crystal in the terahertz range. Physics of the Solid State, 51(10):2045–2050, 2009. doi:10.1134/S1063783409100096.

[75]

Marco De La Pierre, Marco De La Pierre, Cédric Carteret, Roberto Orlando, and Roberto Dovesi. Use of ab initio methods for the interpretation of the experimental IR reflectance spectra of crystalline compounds. Journal of computational chemistry, 34(2):1476–85, apr 2013. URL: http://www.ncbi.nlm.nih.gov/pubmed/23559424, doi:10.1002/jcc.23283.

[76]

J. L. Allen, T. J. Sanders, J. Horvat, R. A. Lewis, and K. C. Rule. Determination of Vibrational Modes of L-Alanine Single Crystals by a Combination of Terahertz Spectroscopy Measurements and Density Functional Calculations. Physical Review Letters, 130(22):226901, 2023. URL: https://doi.org/10.1103/PhysRevLett.130.226901, doi:10.1103/PhysRevLett.130.226901.

[77]

M. F. MacMillan, R. P. Devaty, and W. J. Choyke. Infrared reflectance of thin aluminum nitride films on various substrates. Applied Physics Letters, 62(7):750–752, 1993. doi:10.1063/1.108595.

[78]

S. C. Lee, S. S. Ng, H. Abu Hassan, Z. Hassan, and T. Dumelow. Crystal orientation dependence of polarized infrared reflectance response of hexagonal sapphire crystal. Optical Materials, 37(C):773–779, 2014. doi:10.1016/j.optmat.2014.09.006.